
Apple II

apple][4Inside the

64K>>>

24BITS
+++

Apple II

Inside the Apple II4

DISCLAIMER OF ALL WARRANTIES AND LIABILITY
APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR
LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN
NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TO YOU.

This manual is copyrighted and contains proprietary information. All
rights are reserved, This document may not, in whole or part, be copied,
photocopied, reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple Computer
Inc.

© 1980 by APPLE COMPUTER INC. :)
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER INC.

APPLE Product # D2L0024
950-0018

Printed in USA

TABLE OF CONTENTS

CHAPTER 1 BEYOND 64K 1
CHAPTER 2 THE 652402 3
CHAPTER 3 OS4 & THE COMMAND LINE 5
CHAPTER 4 DISK II4 & DOS4 9
CHAPTER 5 80-COLUMN TEXT 17
CHAPTER 6 THE 24-BIT MEMORY MAP 19
CHAPTER 7 BASIC 23
CHAPTER 8 ASSEMBLER 25
CHAPTER 9 APPLE II PLUS 27

THEN THE APPLE II5 29
THEN THE APPLE II6 31
THEN THE APPLE II7 35

MEANWHILE THE APPLE /// 37

FINALLY DOWN THE RABBIT HOLE 41

BONUS THE ACCEMBLER 45

BONUS THE 650024 67

BEYOND 64K 1

CHAPTER 1
BEYOND 64K

In 1965, Gordon Moore, one of the co-founders of Fairchild and Intel
looked at the average number of transistors integrated on the computer
chip, plotted out how that had changed over the previous eight years, and
noticed that the number of transistors had been doubling every 18 months.

In 1978, Steve Jobs, co-founder of Apple, met with Gordon Moore and asked
him how “Moore’s Law” would apply to random access memory chips (a.k.a.
RAM), one of Intel’s main products. Moore asked Jobs how much RAM was
included in each model of Apple computer.

The original Apple Computer kit in 1976 typically included just 4K or 8K
of RAM. The Apple II, a year later, could manage between 4K and 48K, and
by the end of 1977 16K was considered a small amount of memory. Two years
later, 1979, the Apple II Plus shipped standard with 48K of RAM, with an
additional 16K often added on through the Language Card, plus another 1K
on the 80-column card.

Common amounts of RAM

Plotting out these values
made it obvious that RAM was
growing even faster than
Moore’s general rule on
transistors, doubling every
18 months.

If this trend continues through the 1980s, the 1984 Apple computer will
include 2,048K of RAM, a.k.a. 2 megabytes. Even if the trend slows, by
the end of the 1980s computers will have many megabytes of RAM, far more
than the 64K that the original Apple II was designed, at most, to manage.

Which is why the Apple II4 has been designed to manage up to 16,384K of
RAM (a.k.a. 16 megabytes), crashing through the 64K limit set not just the
Apple II, but by all other microcomputers too.

THE 652402 2

Expected amounts of RAM, per computer

THE 652402 3

CHAPTER 2
THE 652402

The computer chip that powers all the previous Apple computers is the
6502. This chip was the breakthrough that made microcomputers affordable.
The one big limitation of this chip is that it could manage only up to 64K
of memory.

To overcome this barrier, the Apple II4 uses the Apple co-designed 652402
microprocessor. This chip is fully backward compatible with the 6502,
allowing the Apple II4 to use any of the thousands of programs available
for the Apple II and II Plus. This chip has just one new design feature,
managing up to 16MB (M = megabyte = 1,024K) of memory.

Plus... the 652402 is twice as fast as the 6502, running at 2MHz, i.e.
able to run 2 MILLION operations per second.

The INSIDE Story on the 652402

After that meeting with Gordon Moore, Steve Jobs set off on a mission to
ensure future Apple computers would not be held back by the 64K limit
embedded within the 6502’s design. It didn’t take long for Steve to find a
sympathetic ear in Bob Schreiner, CEO of Synertek, the company that
manufactures all of Apple’s 6502s.

In their first meeting, Steve and Bob agreed on a design that would, as
simply as possible, expand the 6502 from 16-bit addresses (64K) to 24-bit
addresses (16,384K). Bill Mensch and a few of the original designers of
the 6502 had recently joined Synertek. With their experience the 652402
was designed and ready within just nine months of that fateful meeting.

That same meeting created a plan for future microprocessor upgrades, to
build upon this design partnership into the future, ensuring that the
Apple computers would continue be at the forefront of personal and
business computing.

Look for those changes in next year’s Apple computers, as Steve Jobs
mission includes shipping a new, improved computer EVERY YEAR, which is
why the Apple II4 is here just a year after the Apple II Plus.

THE 652402 4

The 652402 includes all the same opcodes as the 6502:

ADC, AND, ASL, BCC, BCS, BEQ, BIT, BMI, BNE, BPL, BRK, BVC, BVS,
CLC, CLD, CLI, CLV, CMP, CPX, CPY, DEC, DEX, DEY, EOR, INC, INX,
INY, JMP, JSR, LDA, LDX, LDY, LSR, NOP, ORA, PHA, PHP, PLA, PLP,
ROL, ROR, RTI, RTS, SBC, SEC, SED, SEI, STA, STX, STY, TAX, TAY,
TSX, TXA, TXS, TYA

All of instructions work exactly the same on the 652402 as the 6502,
including all of the machine codes, the number of cycles, the instruction
lengths, etc. One (and only one) opcode has been added. This allows the
microprocessor to access memory using 24-bit addresses. The mnemonic for
that operation is A24 (using the otherwise unused machine opcode $1F).

This single-byte opcode works differently from all the others. By itself
it does nothing. But when placed before another opcode, it changes the
behavior of that next opcode. If that opcode on the 6502 included two
bytes to specify the address (a 16-bit address), then after an A24 that
opcode requires three bytes (a 24-bit address).

To process this extra byte, the 652402 uses one extra clock cycle. For
example, LDA $abcd is a 3-byte instruction that runs in 4 clock cycles.
A24 LDA $abcdef is a 5-byte instruction that runs in 5 clock cycles.
Similarly, JSR $abcd is a 3-byte instruction that runs in 6 clock cycles,
while A24 JSR $abcdef is a 5-byte instruction that runs in 8 clock cycles.
One extra cycle to read the extra byte, and one extra cycle to push a 24-
bit return address on the stack.

If an opcode doesn’t work with memory addresses, then A24 does nothing,
and is ignored.

This style of opcode modifier is not part of the 6502 instruction set, but
it is not novel. Other microprocessors have modifier opcodes and there
they are called "prefix codes".

The A24 prefix code is how the 652402 is 100% backward compatible with the
6502. If the assembly code doesn’t use the A24 mnemonic, then the
microprocessor uses 16-bit addresses and behaves exactly like a 6502.
100%, cycle-by-cycle backward compatibility.

The only caveat for programmers to remember when using this prefix code is
that A24 JSR $abcdef requires a matching A24 RTS, as A24 JSR $abcdef
pushes a 24-bit return address while A24 RTS pops a 24-bit return address.

OS4 & THE COMMAND LINE

5

CHAPTER 3
OS4 & THE COMMAND LINE

The other big change between the Apple II4 previous Apple II computers is
the more powerful, OS4 operating system and its new and improved command
line. This follows the progression of previous Apple computers, from the
Monitor in the original Apple kit to Integer BASIC in the Apple II to
Applesoft BASIC and DOS 3.3 in the Apple II Plus.

When the Apple II4 is powered up (or reset), everything it needs to run
the new command line is included in the new OS4 ROM.

As soon as you turn on your Apple,
the screen will clear, “Apple][4”
will be drawn across the top of the
screen, and the ":" prompt will be
drawn, with a flashing '_' cursor
ready for your command.

You don’t need to "boot" up the disk
drive, hit reset, or do anything to
get started.

To help you remember the various commands, type ‘?’ followed by RETURN.
Note: you just type the ?, all by itself, with no quotes, as shown in the
screen shot below.

The question mark command (‘?’)
lists all the valid commands.

As you will see later in this
manual, there will be other command
lines with other prompts, and ‘?’
will similarly show which commands
are valid for those prompts.

The first command on the list is “ascii”. Try it.

Type the letters a s c i i and then then press the RETURN key. If you are
used to the Apple II, you might notice that there are both CAPITAL and
lowercase letters on the Apple II4. The command line doesn’t care which
you use. You press and hold the SHIFT key to type the uppercase letter.
If you don’t press the SHIFT key, the letters you type are lowercase.

OS4 & THE COMMAND LINE 6

The “ascii” command displays all the
letters, numbers, and symbols that
the Apple II4 can display. The
funny name comes from the American
Standard for Character Interchange,
a.k.a. ASCII.

Like the Apple II, the Apple II4
normally displays text as white dots
on a black background, but it can

also display “inverted” text as black dots on a white background, or
“flash” the text between normal and inverted.

The next command to try is “clear”. Type: c l e a r RETURN

This command clears the screen. Mostly. The “Apple][4” stays visible at
the top. Later you’ll see how that title changes when you run another
program. You’ll also see later how the “clear” command is smart, clearing
the graphics screens when you are displaying graphics or the text screen
when viewing text.

Feel free to try out the other commands too. There is no way to break or
harm your Apple computer by typing a command. The worst case is you’ll
get an *** UNKNOWN ERROR message, which will remind you to use the ‘?’
command to help you figure out what you misspelled.

For example, “cleer” is not a valid
command, as it is misspelled.

OS4 & THE COMMAND LINE

7

To help you further, the command line can “auto complete” your commands.
Type just the ‘a’ key and then press the key labeled TAB. The Apple II4
will fill in “ascii” on the command line for you.

Try it with some other letters too. Or multiple letters. Type c l TAB
and the Apple will fill in “clear” command.

The Apple II4 will also remember the previous two commands you typed, and
you can re-enter them by pressing the UP ARROW key.

And, of course, sometimes you need to edit your commands before you hit
RETURN, and you can do that with either the DELETE key or the left arrow
key. Both will delete the last character on the command line.

DISK II4 & DOS4 8

DISK II4 & DOS4

9

CHAPTER 4
DISK II4 & DOS4

Disk][and DOS 3.2 were groundbreaking products when they were released
back in 1978. The Disk][floppy drives were fast, held more storage than
their competitors, and were a lot more affordable too.

The Apple II4 builds on that legacy with the new Disk II4 floppy disk
drives and floppy disk control board. What is new? The floppy drives are
now double sided, able to store 284K per disk, and the floppy drives now
have their own 6502-like microprocessor, which greatly speeds up reading
and writing, as well as the next command “catalog”.

The INSIDE Story on the Disk II4

In that fateful meeting of Steve Jobs and Bob Schreiner (CEO of Synertek)
the two men didn’t just talk about the main microprocessor, they also
talked about all the other logic chips in the Apple II, and together
created a plan on greatly shrinking the number of chips in the computer by
integrating those dozens of support chips into just a handful of chips.

One of those chips manages the larger 24-bit address space, implementing
the new memory map (discussed in Chapter 6). Another simplifies the
floppy disk logic invented by Steve Wozniak (Apple’s other co-founder)
into a single chip, and couples that “Integrated Woz Machine” with a
Synertek 6507 microprocessor, which is a lower-cost, simplified version of
the 6502.

Put the System disk into your
Disk II4 floppy drive, then type:
c a t a l o g RETURN, or more
simply, c TAB RETURN. Almost
instantly you will see a listing
from that floppy.

What you might have noticed is that as soon as you closed the latch on the
floppy drive, it spun up for a few seconds. That was the Disk II4
microprocessor reading the catalog of the floppy before you started typing
the command. It was able to do that without the cursor even flickering
because of that extra microprocessor.

DISK II4 & DOS4 10

The CATALOG display will look familiar to anyone who has used DOS 3.2 or
3.3 on the Apple II or II Plus, but with a few small differences.

First, each floppy disk has a name. The name of the System disk isn’t
“System”, it is “Disk][4”, as seen in line “CATALOG for Disk][4”.

Second, each entry has a three character file type instead of just one.

Third, the file size looks similar to DOS 3.2/3.3, but in OS4 this is the
size in K rather than the number of sectors. OS4 is designed to support
hard disks and other storage systems and hides sectors and other floppy-
specific details.

Back to the file type, note how a few of the entries on the System disk
have file type “:::” (three colons). These are sub-directories. In DOS4,
you can organize your files into sub-directories. For simplicity, only
the top-level catalog can have subdirectories.

You can view the contents of these
sub-directors by including their
name in a “catalog” command, e.g.,
“catalog text” to see the files in
the “text” directory, or “catalog
os4” to see the to see the files in
the OS4 directory.

The catalog command doesn’t care if you type UPPERCASE or lowercase
letters. All the commands on the Apple II4 are “case insensitive”.

On the top-level catalog and in the TEXT directory you will find files
with the TXT file type. These are text files. To view the “Welcome” text
file, type “view welcome”

DISK II4 & DOS4

11

The contents of the file will display on the screen. This file is too
long to fit on one screen, so once one screenful of information displays,
it stops. Press any key to show the next screen. Repeat screen by screen
until the end of the file to view the whole file.

Like on the Apple II and II Plus, if you want to stop in the middle of a
file, press Control-C (hold down CONTROL and press C) or press the ESC key
(a.k.a. the ESCAPE key).

The “view” command is much more powerful than just displaying text. Type
“view images”. “IMAGES” isn’t a file, it is a sub-directory. The “view”
command noticed the “:::” file type and ran the command “catalog images”,
as “catalog” is how you view a directory.

Even more impressive is when you type “view images:US Flag” followed by
RETURN. View noticed that the “US Flag” file in the “IMAGES” directory
was a LORES graphics image (file type “LO_”). The view command was smart,
loading that image into the LORES graphics memory, and it changed the
settings to display the second LORES graphics page. (Why the second LORES
page? That will be covered by Chapter 6: II4 MEMORY MAP).

Getting back to the TEXT page is simple. Press the ESC key.

Press ESC one more time. The ESC key will toggle between the graphics
mode and text mode, making is quick and easy to use the command line when
viewing (or editing) graphics.

Back to the “view images:US Flag” command. The syntax used here is the
sub-directory name followed by a colon (‘:’) followed by the file name in
the sub-directory, with no spaces before or after the color. That is how
you fully specify the file you are trying to view (or edit or otherwise
modify).

That said, type “view Kenya flag”, hit RETURN.

DISK II4 & DOS4 12

While DOS4 lets you create sub-directories, as long as the file name is
unique, DOS4 will find it for you without requiring you to type the
directory name and the colon.

Another image to try is “view California LO”

The LORES graphics resolution doesn’t have enough pixels to clearly render
the words CALIFORNIA REPUBLIC. But “view California HI” and a HIRES
version of that flag will get loaded and displayed.

Again, the ESC key toggles between TEXT mode and in this case, HIRES
graphics mode. If you want to flip between the two graphics, type the
command “lores” to go back to the LORES graphic. If you do that while the
HIRES graphic is loaded, then ESC will toggle between LORES and HIRES
graphics modes.

In that case, to get back to TEXT mode, the command is “text”.

DISK II4 & DOS4

13

Now for a bit more fun, type “edit US Flag”

The LORES graphics file is shown like before, but there is an extra white
dot in the upper left corner, and if you use the UP, DOWN, LEFT, and RIGHT
buttons on the keyboard, that dot moves around the screen. That dot is
the cursor for editing LORES graphics!

After moving the cursor around the
screen, press ESC. Like with “view
US Flag” the display will toggle
back to the TEXT view, but look
carefully and you’ll notice a few
differences.

The prompt by the flashing cursor is
now “LO:” instead of just “:” and
the top of the screen doesn’t say

“Apple][4”, it instead says “LO-Edit – a LORES editor”. You loaded and
started running a program from the System disk! Which program?
“OS4:LO_ EDIT”

Just as the view command looked at the file type to figure out how to
display the file, the edit command is similarly smart. But unlike view,
edit doesn’t have any built-in editors. Instead, it looks in the “OS4”
subdirectory for a program named “XYZ EDIT” where “XYZ” matches the file
type of the file you specified.

If you had instead typed “edit California HI”, the results would have been
“*** No EDIT program was found” as there is no program in the OS4
directory named “HI_ EDIT”.

You can tell when a file is a program as the file type is “RUN”

DISK II4 & DOS4 14

Back to the LORES editor, type ? RETURN to see the list of commands that
are valid in this program.

We said there would be other command
lines, and here is the first
example. You cannot run the
catalog, view, or edit commands from
this command line, but you can run
other commands relevant to LORES
graphics like: color, hline, vline,
x, and y.

There are a few other keys that are special, displayed above the list of
commands. When viewing the graphic, pressing ‘.’ colors in pixels as you
move the cursor, and ‘/’ stops doing that. The ‘-’ key hides the cursor,
and the ‘+’ shows it again (as does UP, DOWN, LEFT, or RIGHT).

Type “color 0” or “color 1” or any number up to “color 15” to set the
color that is drawn when the “pen” is down. Or just type 0 RETURN, 9
RETURN, 1 1 RETURN, 1 5 RETURN, etc. to change the color without typing
the word “color” first.

“x 10” moves the cursor to column 10. “y 24” moves the cursor to row 24.

“hline 5,20” draws a horizontal line on the row where the cursor is
located from column 5 through column 20, in the current color. “vline
0,47” draws a vertical line from the top of the screen to the bottom, in
the column where the cursor is located, in the current color.

“store my image” creates a new file named “my image” and saves the image
into that file. “load California lo” loads and displays the LORES
California flag image.

When you are done editing, use the
“quit” command to return to the OS4
command line.

You’ll know quit worked as the words
“>> END PROGRAM” will be drawn on
the screen, the prompt before the
cursor will again be a ‘:’, and
“Apple][4” will appear at the top
of the screen.

DISK II4 & DOS4

15

There is another program in the OS4 directory, “BIN EDIT”, but there are
no “BIN” files to edit. To try out this program, type “run OS4:BIN EDIT”.

In a few seconds, up pops the BIN Editor. Like the LORES editor, press
ESC to see the command line and use the ‘?’ command to list the valid
commands.

This program has a cursor, seen as
the inverted text, and again, UP,
DOWN, LEFT, RIGHT move the cursor.

When viewing the file, RETURN lets
you edit the value pointed to by the
cursor, and then RETURN lets you
save that value.

The ‘x’ and ‘y’ commands again let you move the cursor from the command
line, and again the ‘store’ and ‘load’ commands will let you save and load
files. In this case, BIN files, a.k.a. binary files.

And to keep these command-line programs consistent, when you are done
editing your BIN file, use the “quit” command to return to the OS4 command
line.

DISK II4 & DOS4 16

Back at the OS4 prompt, you can view the memory of the Apple II4 using the
“peek” command. Peek will display the memory starting at address zero if
you do not specify an address. You can specify addresses using either
decimal or hexadecimal values. Hexadecimal values are specified by typing
a ‘$’ before the value, e.g. $ 8 0 0 for memory location $800 = 2048.

You can also specify the number of bytes to display, specifying that
either as a second address or as the number of bytes to display. In the
latter case, prefix the number of bytes with a ‘+’.

80-COLUMN TEXT

17

CHAPTER 5
80-COLUMN TEXT

A very common expansion card for the Apple II Plus is the 80-column card.
When enabled, this displays an 80x24 character page of text instead of the
built-in 40x24 characters.

The 80-column card stores the extra 960 bytes of text in a bank of memory
outside the main 64K. This design choice makes it challenging for
programs that want to support both 40-column and 80-column text.

The Apple II4 implements the same 80-columns behavior, but as a built-in
function of the computer, within the standard memory map, reusing the
memory normally used by page one of the HIRES graphics mode.

To switch to display 80 column text, use the “text 80” command.

All the commands act the same as in 40 column mode, except that more text
is visible on the screen. Some commands, e.g. ‘peek’ will change their
format, in this case displaying 16 bytes per row instead of 8.

To switch back to 40 columns, the command is “text 40”.

THE 24-BIT MEMORY MAP 18

40 column text

80 column text

THE 24-BIT MEMORY MAP

19

CHAPTER 6
THE 24-BIT MEMORY MAP

With up to 16,384K of memory the Apple II4 memory map is a lot less of a
squash and a squeeze as compared with the Apple II and II Plus.

+--+
$0000-$00EF – Zero page
$00F0-$00FF – OS4 “registers”
$0100-$01FF – 6502 JSR/RTS stack
$0200-$03FF – unused
$0400-$07FF – TEXT page 1 (and LORES page 1)
$0800-$0BFF – LORES page 2 (and TEXT page 2)
$0C00-$03FF - unused
$2000-$3FFF – TEXT80 and HIRES page 1
$4000-$5FFF – HIRES page 2
$6000-$BFFF – unused
$C000-$CFFF – Soft switches and Expansion cards
$D000-$DFFF – Command line and subroutine parameters
$E000-$FCFF – unused
$FE00-$FEFF – Command line input buffers
$FF00-$FFFF – Global variables
+--+
$10000-RAM – RUN programs and VIEW/EDIT files
$FF000-$FFFFF – OS4 ROM
+--+

On both the 6502 and 652402, the first 256 bytes of memory are special,
with opcodes that can read, write, and manipulate these values using
1-byte addresses instead of 2-bytes or 3-bytes. Bill Mensch, one of the
designers of the 6502 called this feature “addressable registers”, as in
the microprocessor didn’t have just the three A, X, and Y registers as
taught in the assembly code manuals, but another 256 registers using these
special “zero page” addressing modes.

The Apple II4 and OS4 follow Mr. Mensch’s vision and leaves 240 of the 256
bytes of this precious “zero page” memory space for programmers to use as
registers or faster-to-access variables.

THE 24-BIT MEMORY MAP 20

The TEXT, LORES, and HIRES memory pages are located at the same addresses
as on the Apple II, with page one at $400, $400, and $2000 respectively.
The “view” and “edit” programs for LORES graphics use LORES page 2 instead
of page 1 to allow for toggling between TEXT and LORES graphics. LORES
page 2 starts at address $800. TEXT page 2 is not used by OS4.

The TEXT80 page is stored in memory $2000-$27F0, overlapping page one of
the HIRES graphics. In this case, if you “view” a HIRES graphics file it
will be seen as random characters on the 80 column text screen, and if you
enter commands in “text 80” mode, you will see random colors appear on the
“hires” page.

Addresses $C000-$CFFF are unchanged from the Apple II, except the soft-
switches to enable and disable TEXT80 mode are $C068 and $C060. On the
Apple II and II Plus these are used to read and write from the cassette
tape. With Disk II4 as standard, the Apple II4 does not have a built-in
ability to read or write to a cassette tape.

Addresses $D000-$DFFF are used to pass parameters into the command line,
and to/from the built-in library of subroutines stored in ROM.

$E000 is an unused block available to programs.

Addresses $FE00-$FEFF hold the text from the command line along with
copies of the previous two commands entered on the command line. On the
Apple II, this input buffer is located down at address $200-$2FF. It had
to be near the start of memory on the original Apple II as it had to fit
within the 4K of memory of the earliest Apple computers.

Similarly, previous Apple II computers put their global variables down in
addresses $300-$3FF. The Apple II4 moves those “out of the way” up in
addresses $FF00-$FFFF, where the previous Apple IIs stored their ROM.

All of the above memory addresses are within the first 64K. $10000 is the
first address newly available given the 24-bit addresses of the 652402,
and the memory map from there onward is simple. OS4 loads programs from
disk to location $10000 and the program can use any location afterward as
one big memory space, a.k.a. a memory “heap”. The size of the loaded
program can be found in RUNLENGTH ($FF16), the first available address
rounded up to the nearest $100 bytes after RUNLENGTH can be found at
HEAPSTART ($FF13), and the size of the installed RAM can be found in
RAMTOP ($FF16). Each of these values is a 24-bit value (3-bytes stored in
little-endian, e.g. $abcdef stored in three consecutive bytes as $ef $cd
$ab).

Finally, the OS4 ROM begins at address $FF0000 and ends at the last
addressable memory location, $FFFFFF.

BASIC

21

CHAPTER 6
FOCUS ON FILES

From the list of commands, it may be obvious that there is a shift in
focus between OS4 and previous Apple computer command lines. The Apple
II4 is focused on files, rather than memory.

The INSIDE Story on files

Steve Jobs made another fateful trip in 1978, this one to AT&T’s famous
Bell Labs, the research lab where the transistor was first invented. On
that trip, the researchers at Bell Labs showed Steve their latest and
greatest software inventions, centered around the UNIX operating system.

UNIX was designed for minicomputers, but by 1978 the Apple II was nearly
as powerful as the Digital Equipment PDP/8, the computer that UNIX was
original built on, back in the mid-1970s.

Not all of UNIX is applicable to microcomputers, but one design feature is
quite applicable now that the Disk][4 is a standard feature on every
Apple computer. UNIX’s focus on files.

This design feature explains why “view” and “edit” do what they do in OS4.
Earlier it was shown how “edit” looks for a matching file in the OS4 sub-
directory called XYZ EDIT, where XYZ matches the file format. The “view”
has built-in viewers for TXT, LO_, HI_, and BIN files. For all others it
follows the same process as “edit”, looking for XYZ VIEW in the OS4
directory.

Programmers can create their own file formats, their own VIEW-only
programs, and their own EDIT programs.

Alternatively, the “run” command can be used to load and run a program,
and a file name can be entered on the command line to optionally open and
act on a specific file. For example, “run BIN EDIT,US Flag” will load and
run the BIN EDIT program, which will in turn open and edit the US Flag
file. Not as a LORES graphics image, but as a binary (BIN) file.

BASIC 22

The “IMAGES:US Flag” file opened in BIN EDIT

BASIC

23

CHAPTER 7
BASIC

Applesoft BASIC has also been updated on the Apple II4, but not
dramatically. The new big features are: support for lowercase, support
for hexadecimal numbers, and support for programs larger than 64K in size.

Plus, following the file-centric model, the “run” command is smart,
looking at the file type to determine if a file is a BASIC program (type
BAS), and if so, loading and running it inside the new BASIC interpreter.

That interpreter is built into the OS4 ROM.

However, unlike the Apple II, where the ‘>’ command line was also the
Integer BASIC interpreter, or the Apple II Plus, where the ‘]’ command
line was also the Applesoft BASIC interpreter, on the Apple II4, you have
to run the ‘basic’ command to start the BASIC interpreter.

We made that change for two reasons. One, because with the file-centric
operating system, the expectation is that the BASIC program will be edited
in a text editor and saved as a TXT file, rather than entered line by line
inside the BASIC interpreter. Two, because there are other languages
available for the Apple II, with more on their way.

And most importantly, three, because more and more owners of Apple
computers are not programmers or computer hobbyists like the initial
customers. More and more computer owners are office workers or other
professionals, who expect the computer to first and foremost run programs
that are created by professional programmers. With that, programming
languages are now just one more program that can be run, rather than a
central activity of an Apple computer.

Beyond running and editing BASIC programs, there are a few other small
changes. First, PEEK, POKE, and all other values can be specified in
hexadecimal, using #$ as a prefix, e.g. the value 32769 can be entered as
#$8001. Second, BASIC programs can be megabytes in size, limited only by
the amount of RAM installed on the Apple][4. BASIC programs are loaded
into memory location $10000 and use the memory between HEAPSTART and
RAMTOP to store the program and its variables.

BASIC 24

ASSEMBLER

25

CHAPTER 8
ASSEMBLER

The Apple II ROM included the “mini assembler”. The Apple II4 ROM
includes a full, multi-pass symbolic assembler.

Most professional software programs are written in assembly code, not
BASIC. With up to 1,024K of memory installed on an Apple II4, complex
programs can now be edited, compiled, and debugged without needing to
“cross compile” the assembly code on a minicomputer or mainframe computer.

To write a program in assembly, use the text editor to write your program
and save it as a TXT file. Then type a s s e m b l e followed by a space
and a filename for the assembled program, followed by a comma and the
filename of the text file to assemble (followed by more commas and more
filenames if you have split your program into multiple files) all followed
by RETURN. The assembler will create a file of type RUN with your
assembled program if there are no errors, or it will display those errors
on the screen for you to fix.

Once assembled, you can “run FILENAME” to run and test your program.

See the “Apple][4 Assembler” manual for details on the syntax of this
assembler.

ASSEMBLER 26

APPLE II PLUS

27

CHAPTER 9
APPLE II PLUS

To support all of the legacy programs from the Apple II and II Plus, the
Apple II4 includes the “2+” command. Type 2 + RETURN and the memory map
switches back to the that of the Apple II Plus, the ROMs from the II Plus
swap into memory locations $D000-$FFFF, the keyboard switches to all
UPPERCASE, the floppy disks switch to be single sided, the computer boots
from the floppy disk as if it was an Apple II Plus, and the microprocessor
speed drops down to 1MHz.

In short, every Apple II4 is also a 64K Apple II Plus.

THE APPLE II5 28

THE APPLE II5

29

AFTER THE II4
THE APPLE II5

Back in 1980 we promised a new Apple computer every year, and here in 1981
the new model is the Apple II5. In keeping with the double meanings of
the names, the II5 is not only the next number is the sequence, but the
‘5’ represents the new super high resolution 512x384 pixel graphics mode.

Here are a few images: HIRES (280x192) and GRAPHICS (512x384)

HIRES

512x384

HIRES

512x384

THE APPLE II5 30

The quality of the new GRAPHICS mode is obvious, but you may notice that
those images are black and white. Yes, that is the tradeoff. A single
image with 512x384 black and white pixels requires 24K of memory. Just
four colors would double that to 48K, and the 16 colors of LORES memory
would require 96K just to store one graphics image. Future Apple][
models will add color, as memory sizes increase.

TEXT64

Along with the new graphics mode is
a new TEXT mode as well. When you
power up the Apple II5, you may
notice that the text is smaller than
the 40-column TEXT of the II4, but
not as squished as the ‘text 80’
mode.

This new TEXT is 64-columns wide, and the same 24-rows as before. The new
mode is far easier to read than ‘text 80’. 64 columns was chosen as 512
divided by 8 is 64, and each character is 8 bits wide.

The ‘text 64’ memory use the same section of RAM as the ‘text 80’ memory,
both begin at address $2000 (overlapping HIRES page 1), with TEXT64 ending
at $25FF.

Beyond that, all the built-in commands display just as well with 64
columns as they do with 40 or 80 columns.

3MHz

The only other change from the II4 to the II5 is another boost in speed,
with the II5 running at 3MHz, 50% faster than the II4, three times faster
than the II and II Plus. And, as predicted, the amount of RAM in the average
II5 is more than the II4, with 256K now affordable and 128K standard.

THE APPLE II6

31

AFTER THE II4
THE APPLE II6

Moving on to 1982, the Apple II6 is another year with a major upgrade. The
big change this year is the 652424 microprocessor, which leapfrogs Apple
Computer beyond the age of 8-bit computing and beyond 16-bits too, jumping
ahead to 24-bits.

Once again, this new microprocessor is 100% backward compatible with both
the 652402 and the original 6502, ensuring the tens of thousands of legacy
programs can continue to run.

CMOS

Externally, the 652424 acts like a bigger, better 652402, but internally
it is a totally new design, based on the new Complementary Metal Oxide
Semiconductor technology (a.k.a. CMOS).

This lowers the power consumption of the 652424 significantly vs. the
652402, and with that, the clock speed has been boosted as high as 8MHz,
more than twice as fast as the Apple II5, four times faster than the II4,
and eight times faster than the II and II Plus.

But that speed does cost more, so the Apple II6 is the first Apple
computer where the customer can pick the speed of the microprocessor, with
choices of 4MHz, 6MHz, and 8MHz.

THE 652424 PREFIX CODES

What makes the 652424 a 24-bit computer is that it can add, subtract,
load, and store 24-bits in a single operation. It can do the same with
16-bits and 8-bits, making it optimal for processing both text characters
and numbers, and a wide variety of small, medium, and large values.

This flexibility is implemented using a method similar to the A24 opcode
from the 652402. The 652424 adds new prefix codes: R16 and R24 which
change the size of the CPU registers for the next operations.

THE APPLE II6 32

For example, R16 LDA #$1234 will load the 16-bit value $1234 into the
A register. Similarly, R24 LDA #1048576 will load the 24-bit value
1,048,576 into the A register. The prefix code defining the width of the
A register for that LDA operation, filling in any unused bits with zeros.

The X and Y registers can also each store an 8-bit, 16-bit, or 24-bit
value. R16 LDX $2000 will load a 16-bit value from address $2000 into the
X register. R16 INX will then increment the 16-bit value in the X
register. R16 TXA followed by R16 TAY will copy that 16-bit value from
the X register to the A register and then to the Y register.

The R24 prefix code acts similarly, except that the values loaded are 24-
bits (3 bytes). In all these cases, the value is stored in little endian,
e.g. $abcdef is stored in consecutive memory addresses as $ef $cd $ab.

It is also possible to mix the 24-bit addresses with 16-bit and 24-bit
registers. For that, rather than requiring two prefix codes, the W16 and
W24 prefix codes have been added. These are just like R16 and R24 except
that the address in the opcode is 24-bits wide instead of 16-bits.

For example, W24 LDA $123400 loads a 24-bit value from the 24-bit memory
address $123400. W24 ADC $10400 adds the 24-bit value stored in address
$10400 to the A register.

652424 ASSEMBLY
This may sound complicated, but the assembler has been updated to take
care of the prefix codes for assembly language programmers. Rather than
specifying prefix codes, the assembly mnemonics are augmented with
suffixes.

LDA.a24, STA.a24, ADC.a24, JMP.a24 specifies that the opcode address is
24-bits. LDA.b or LDA.r8 loads an 8-bit value, LDA.w or LDA.r16 loads a
16-bit value, and LDA.t or LDA.r16 load a 24-bit value.

The suffixes can have suffixes, e.g., LDA.a24.w loads a 16-bit value from
a 24-bit memory address and STA.a24.t stores a 24-bit value into a 24-bit
memory address.

That too may at first sound a little complicated, but it becomes second
nature after a little practice as programmers plan which memory locations
store 8-bit, 16-bit, and 24-bit values, and at any given time plans out
the width of the values in the A, X, and Y registers.

THE APPLE II6

33

A BIGGER STACK

The S register gets an upgrade too. The 652424 is no longer limited to
just 256 bytes of stack space. Upon power up or reset, the S register is
set to 8-bits and memory location $1FF to ensure backward compatibility
with the 6502.

But the ROM in the Apple II6 includes the sequence R16 SWS, using the new
SWS opcode to change the width of the S register to 16-bits, and then
initializes the stack address to $FEFF. The width of the S register is
specified by the prefix code (or lack thereof) before the SWS opcode. R24
SWS sets the S register to be 24-bits wide and SWS alone resets the width
to 8-bits.

SWS does not set the value of the S register. TXS is used for that, with
the sequence LDX.w #$FEFF (which is assembled into R16 LDX #$FEFF)
followed by TXS.w (assembled into R16 TXS) to move the value into the S
register.

No matter the width of the S register, PHA.w, PHA.t, PLA.w, and PLA.t will
push and pull 16-bit or 24-bit values from the stack.

OTHER NEW 652424 OPCODES

In addition to wider registers, the 652424 adds a few new opcodes and one
new addressing mode.

PHX, PLX, PHY, and PLY push and pull values from the X and Y registers to
the stack.

STZ stores the value #0, with address modes for zero-page and other
addresses, with and without adding the X index register.

INC and DEC increment and decrement the A register.

SL8 and SR8 shift the A register left and right 8-bits at a time. This is
helpful when processing 16-bit or 24-bit values byte by byte.

XSL and YSL shift the X or Y register left by one bit, filling in the
least significant bit with a zero and ignoring the value of the most
significant bit. This is useful for indexed address mode when tables
include 16-bit values, as the index needs to be multiplied by two as each
entry is two bytes long.

ADX, ADY, and AXY add the value of X to A, Y to A, or both X and Y to A.
This is especially useful with 16-bit and 24-bit values, as the X and Y
registers can act as address registers rather than just index registers.
Complex structured data can be easily managed with just a few opcodes

THE APPLE II6 34

using a little addition, as well as allowing X and Y to store temporary
values that would otherwise have to be stored in memory when the A
register is otherwise needed.

Three existing opcodes get two brand new addressing modes: LDA X, LDA XY,
STA X, STA XY, and CMP X, CMP XY. In these modes, the address for the
load or store or compare is either stored in the X register alone, or is
the sum of the X and Y registers.

The XY mode is similar to the 6502’s (zp),Y indirect indexed address mode,
without having to use the zero page. The X addressing mode is similar to
a (zp) addressing mode, again without using the zero page, and without
adding the value of the Y register. Given a 24-bit value in the X
register can hold any address, and given INX.t can increment the X
register, this new address mode along with the INX opcode is often
sufficient for iterating through an array of values, without needing Y as
an index register.

JMP and JSR get small updates, with indirect JMP (addr) and JSR (addr)
address modes. These are used to simplify the assembly code for jumping
into the ROM subroutines.

Finally, BRA is added, branching always, no matter the state of the 652424
status flags. This makes it far simpler to write relocatable code. So
does the A24 extension to all of the BRx opcodes, increasing the distance
the branches can branch from 127 bytes (plus or minus) to 32,767 (plus or
minus).

24-BIT BASIC

Apple II6 expands BASIC to support 24-bit values too. Numeric variables
can store values between -8,388,608 and 8,388,607, up from the range
-32,768 to 32,767.

THE APPLE II7

35

AFTER THE II4
THE APPLE II7

By 1983, the Apple II7 introduces a massive change to Apple Computer, this
time in software rather than hardware.

The INSIDE Story of the walk in the PARC

In 1980, Steve Jobs and a few Apple software and hardware engineers were
invited to visit Xerox’s Palo Alto Research Center (a.k.a. Xerox PARC),
located a few towns over from Apple’s headquarters in California. Given
Xerox’s focus on copiers, not much was expected from this trip.

To say the visit exceeded expectations is an understatement.

This research lab had been tasked with building the computer systems from
ten years into the future. What Steve and team saw that day totally blew
their minds, as Xerox had succeeded in that mission.

The downside was that much of what Xerox had built couldn’t be
commercialized, as a computer half as powerful as their lab machines would
cost $10,000 or more. But that didn’t mean there were not a few concepts
that could be commercialized, and the first of those appeared in the II5
in 1981, the 512x384 graphics mode, as a core piece of the future of
computing was centered on high resolution graphics.

What Xerox did with those graphics took a few more years for Apple to
replicate. The graphical user interface.

Apple II7 was fully backward compatible with the II4, II5, and II6, but
OS7 was vastly different. Upon power up, OS7 displayed the “Finder”, a
graphical user interface that used icons and windows rather than a command
line. Rather than a flashing prompt, there is a pointer on the screen
that moves when the “mouse” is moved. Files and open and programs are run
by pointing to an icon representing that file or program and clicking the
button on the mouse.

To make the most of this new computing paradigm, the II7 included the 7/7
suite of programs: Write, Draw, Calc, Graph, Calendar, Contacts, and List.

Write is a WYSIWYG text editor. What You See Is What You Get, displaying
the text using multiple typefaces, with a ruler to set margins and tabs,
embedding graphics alongside the text. It allows a single person to
replace a team of typesetters and makes “desktop publishing” possible.

THE APPLE II7 36

Draw is the tool for creating and editing those graphics. It too is
WYSIWYG, with tools like pens and paint brushes, all drive by the mouse.

Calc is a spreadsheet, which like Write can display labels and values
using multiple sizes of typefaces, make spreadsheets not just functional,
but also pretty.

Graph creates pie charts, line and bar graphs, and scatter plots from the
spreadsheet data. These graphs can be embedded within Write embedded into
spreadsheets, or imported into Draw.

Calendar is an electronic day planner, storing appointments and meetings.

Contacts is an electronic Rolodex.

List is an electronic “to do” list.

Calendar, Contacts, and List all work together, allowing calendar events
to reference contacts and to embed TODO items. Contacts can include
embedded TODO items and will show upcoming events for that contact.

All seven of these programs support the “clipboard”, allowing information
to be copied from application to application.

And sharing is made simpler as the Apple II7 includes two hardware
upgrades too:

The first is the move to the 6524T4, fully backward compatible with the
652424, but with four microprocessor “threads”. This is like having four
separate microprocessors, one to run OS7 and three more, each able to run
another program simultaneously. Or in other words, the Apple II7 can
“multi task”, running up to three programs at once, seamlessly.

The other change is the Integrated Atkinson Chip, a.k.a. the “Bitblt”
processor or “graphics accelerator”. This chip takes the burden of
drawing the text, lines, circles, and rectangles on the graphics screen,
speeding up the computer tremendously.

With these changes, the Apple computers are years ahead of the
competition, with the easiest to use and most powerful hardware and
software in the industry.

THE APPLE /// (AND MORE) 37

MEANWHILE…

THE APPLE /// (AND MORE)

It is 1980 and Apple Computer has two new models for sale, the Apple II4
for hobbyists and home use, and the Apple /// for business.

The big differences are that the /// has
a new design, with an integrated double-
sided floppy disk drive, four expansion
slots instead of eight, has no backward
compatibility with the II or II Plus.

The /// is designed to work with a
monochrome monitor, which makes 80-column
text crisp and clear, but which cannot
display color. The /// thus does not
support any of the legacy 40-column text
or LORES or HIRES graphics from the II,
with 80-column text as default.

The Apple /// runs OS///, which uses a similar style of command line as the
II4, the same file centric design, the same smart commands like “view” and
“edit”, but which adds the ability to store sub-directories within sub-
directories.

The Apple /// includes a built-in date-time chip. OS/// uses this chip to
note when a file is modified.

The Apple /// uses the same 652402 as the II4, but runs the microprocessor at
2.5MHz, 25% faster than the II4 and two and a half times faster than the II
and II Plus.

As a serious business computer, the /// comes standard with 128K of RAM,
upgradable to up to 1,024K (a.k.a. 1 megabyte), and the built-in Disk///
controller supports up to three external floppy or hard disk drives in
addition to the one built-in floppy drive.

THE APPLE /// (AND MORE) 38

The same annual upgrade schedule applies to the /// series of computers as to
the II series.

In 1981, the ///a arrives, with the big upgrade the addition of the 512x384
high resolution graphics, identical in functionality to the II5. The 652402
that year is sped up to 4MHz, and the standard RAM grows to 192K.

In 1982, the ///b arrives, with a color monitor and 512x384 graphics that
supports up to 16 colors. A second built-in floppy disk drive is included,
with an option of swapping that out for a 5 megabyte hard disk drive.

In 1983, the ///c ships standard with
3.5” floppy drive, internal space for
a 10 megabyte hard disk, a mouse, a
graphical user interface, and includes
the full 7/7 suite of business
applications.

...

By the mid 1980s, both the II and ///
series supports 1024x768 graphics with
16 million colors, a “graphics
accelerator” chip, and a 6548T16 with 48-bit addresses, virtual memory,
8/16/24/32-bit registers, and multi-tasking using 16 CPU-resident threads.

The internal rivalry between the II team and /// team helped push both
products to excellence, keeping Apple far ahead of the competition. That
competition grew when the “Macintosh” team adding a third product line, one
that took a vastly different path, focusing on computers with no screens, no
keyboards, and no mouse, but instead which sat in the closet and served data
over the local area network to the IIs and ///s that filled the offices.

The next internal competitor was the “Dynabook” team, headed by former Xerox
Parc researcher Alan Kay. The Dynabooks are battery-powered portable
computers, with wireless connections to the Macintosh network, with
touchscreens, and variations of the graphical user interface that made the
computer feel more like pen and paper.

And finally, video games. One of Woz’s
requirements for the first-ever Apple computer
was that it run the game Breakout, a game that
Woz worked on prior to Apple when he worked at
Atari.

One day Woz and Atkinson were playing around
with other uses of the Bitblt chip, whipped up
a circuit to drive 512x384 color graphics on a television by reusing a small
amount of RAM 24 times each time a screen was drawn, and the result was the
“Pippin” gaming machine.

THE APPLE /// (AND MORE) 39

The Pippin has incredible high resolution, 16 million colors, and runs
sixteen times faster than an Atari 2600, but costs only $299 thanks to the
reuse of all the Apple][components. With that, Apple took over the home
video game market.

The commonality of all these products was the integration of cutting-edge
hardware along with software that borrowed the best ideas from across the
whole industry, implementing those ideas into easy to use, practical
solutions that non-experts could understand.

DOWN THE RABBIT HOLE 40

DOWN THE RABBIT HOLE 41

THE STORY
DOWN THE RABBIT HOLE

DOWN THE RABBIT HOLE 42

DOWN THE RABBIT HOLE 43

DOWN THE RABBIT HOLE 44

THE ACCEMBLER 45

BONUS
THE ACCEMBLER

The INSIDE Story on the ACCembler

Beyond the file-centric model of OS4, one other huge innovation came from
the trip to Bell Labs, the ACCembler. AT&T’s UNIX operating system was
written in a computer programming language called “C”. C was an enormous
step up from assembly language. A high-level language, but a very
different high level as compared with BASIC.

C was designed for professional computer programmers, using computers with
a lot of memory, running on CPUs with a lot more functionality than the
6502 or 652402. Because of this, and because C was designed around the
UNIX operating system, programs in C tend to be much larger than programs
written in BASIC and much much larger than programs written in assembly.

For these, and many other reasons, C wasn’t a great fit for the Apple][4,
but there were still a multitude of lessons learned that were compiled
(pun intended) into the ACCembler, which, as its name implies, is a cross
between an assembler of assembly language and a C compiler.

The core ideas.

The design of the ACCembler is wrapped around a few core ideas:

1. Assembly language for speed and efficiency.
2. Structured programming.
3. High level structure + low level assembly language.
4. Named variables.
5. Subroutine parameters and return values.
6. Data blocks.

1. Assembly language for speed and efficiency.

No high level language will ever be as small, fast, and efficient as well-
written assembly code. The ACCembler doesn’t try and compete in any of
those areas. Instead, most of the code for an ACCembler program is
written in assembly, with the same mnemonics and identical syntax to
assembly language. For example:

 LDA #' 'H ; ERASE THE CURRENT CHARACTER
 LDY @TXTPOS
 DEY
 STA (@TXTPTR),Y

THE ACCEMBLER 46

/*
 * The code begins with a JUMP TABLE
 */
sub Start() @$FF0000 {
 jmp Reset
}

/*
 * RST vector points here
 */
sub Reset() @$FF0400 {
 ...
 r16 ; set the stack to be 16-bit wide
 sws
 ldx.w #TOP_OF_STACK ; initialize the stack at $FEFF
 txs.w
 ...
 ; drop through to CommandLoop
}

/*
 * Interpret and run commands
 * echoing the keys as they are typed and store in @TYPBUFFER
 */
sub CommandLoop() {
 jsr ClearInputBuffers
 LOOP {
 jsr SetScreenBase ; Set the @TXTPTR based on @TXTROW
 lda @TXTPOS
 IF == {
 lda @PMPTCHR ; Draw the prompt
 jsr PrintChar
 jsr PrintCursor ; Draw the cursor
 }
 LOOP {
 bit KBD ; check keyboard for next key
 IF - {
 BREAK
 }
 }

 lda KBD ; get the key code and ack the read
 bit KBDSTRB
 IF == $8D { ; 13 = CR ($80 | $0D in high ASCII)
 ...
 }
 }
 ; loop forever
}

THE ACCEMBLER 47

2. Structured programming.

BASIC includes many of the core ideas of structured programming, but C
takes this idea much further, splitting programs into a collection of
“functions” (similar to BASIC’s subroutines), and commonly splitting
programs into multiple files as well.

The ACCembler does the same. Blocks of code are split into named SUB
sections.

Within a function, C includes loops and conditionals that can each include
blocks of code. C uses the { and } characters to mark the start and end
of those blocks. The ACCembler does the same, copying all of that syntax.

See the example ACCembler code at the end of this chapter for the use of
SUB { ... } blocks and other {} blocks.

3. High level structure + low level assembly language.

Inside the blocks, C programs look a lot more like BASIC than assembly.
Instead, most of ACCembler code is assembly code. All of the mnemonics of
assembly instructions are allowed within ACCembler programs. All of the
commonly used techniques for writing assembly are allowed. But in
addition, C keywords like FOR, BREAK, IF, and RETURN are allowed too.

These keywords make ACCembler code much easier to understand and modify
than typical assembly code. A very simple example:

 ASSEMBLY
 KBDWAIT BIT KBD ; WAIT TILL NEXT KEY TO RESUME
 BPL KBDWAIT ; WAIT FOR KEYPRESS

 ACCEMBLER
 LOOP {
 BIT KBD ; CHECK KEYBOARD FOR NEXT KEY
 IF - {
 BREAK
 }
 }

The assembly code loop requires a label, which then doubles as an address
that is often used elsewhere in the assembly code, creating unstructured
jumps that are a challenge to follow when trying to understand or modify
other people’s code.

Furthermore, while expert assembly programmers see BPL (branch if
positive) and know this loops until the opposite is true (when the value
is negative), this opposite logic confuses new assembly programmers, and
especially causes issues on edge cases like when the value is zero.

THE ACCEMBLER 48

The ACCembler code is obviously a loop, thanks to the LOOP syntax, and
obviously the loop stops when the value is negative. And every programmer
knows zero isn’t negative.

This is a rather trivial example but take a look at the example ACCembler
code at the end of this chapter to see for yourself how much more obvious
the structure of the code is when split into {...} blocks and organized by
LOOP, FOR, and IF keywords.

4. Named variables.

Most assemblers include labels, which can be used to specify addresses,
including addresses used to hold variables. The challenge in doing that
in most assembly programs is that all of those variables are defined at
the start of the program.

In a high-level language like BASIC or C, variables can be defined inside
subroutines. The ACCembler allows that too. Which then allows the same
address to be reused over and over in different subroutines.

And yes, that can cause bugs at times, but with sufficient care in the
structure of the program, that is easy to avoid.

In the following example, two values are specified, “I” stored in zero
page address #$04 and “I4” stored in zero page address #$05.

SUB COMMANDLOOP() {
 VAR I = @$04 ; LOOP VARIABLE
 VAR I4 = @$05 ; I * 6

 FOR @I = 0 TO N_COMMANDS-1 {
 LDA @I ; LOAD THE LOOP VARIABLE INTO A
 A <<= 2 ; A SHIFTED LEFT TWICE = A * 4
 STA @I4 ; STORE I*4 INTO I4
 ...
 }
}

The variables are defined using the VAR keyword inside the named SUB
subroutine. Those variables can only be used within that one named
subroutine. It is a syntax error while compiling if the variables are
named elsewhere, although the same names can be reused in other
subroutines.

“Global” variables can be named at the start of the ACCembler code,
outside of all subroutines.

THE ACCEMBLER 49

5. Subroutine parameters and return values.

Subroutines can specify parameters by name too. The simplest version of
these simply inform the programmer whether registers A, X, or Y should
include certain values before the subroutine is called. E.g.:

SUB SETSCREENMODE(MODE A) {
 LDX @DISPMODE ; REMEMBER THE PREVIOUS DISPLAY MODE
 STX @PREVDISP

 STA @DISPMODE ; STORE THE NEW DISPLAY MODE
 ...
}

Parameters don’t have to be passed in registers. The ACCembler allows
parameters to be passed using memory $D000-$DFFF, which on the memory map
is labeled “Command line and subroutine parameters”. E.g.:

/*
 * COMPARE TWO STRINGS
 * RETURN IN A = #FF IF MATCH, #00 IF NOT
 */
SUB COMPARETEXT(STR_A %%7.T, STR_B %%7.3.T) {
 FOR Y = 0 TO 127 {
 LDX.T @STR_A
 LDA.A24 XY
 LDX.T @STR_B
 CMP.A24 XY
 IF != {
 RETURN 0
 }
 IF == 0 {
 LDA.A24 XY
 IF == 0 {
 RETURN $FF
 }
 RETURN 0
 }
 }
 RETURN 0
}

The ACCembler uses a syntax prefixed by %% to specify the memory
locations, rather than using actual address values. The syntax is %%N.M,
where N is a value from 0 through 7 and M is a value from 0 through 255.
These values map to memory location $DNMM. E.g. %%0 = $D000, %%1.3 =
$D103, %%7.64 = $D180, etc.

In C, parameters are passed into functions on a stack, and this syntax
lets a programmer more or less copy that idea, but manually, as long as
the various subroutines are organized into layers. The top layer of

THE ACCEMBLER 50

subroutines should use the %%1 values, and should not call each other.
The next layer of subroutines should use %%2 values, and again make sure
not to call each other, nor any higher level subroutine. The naming
system allows for seven layers of subroutines and up to 255 bytes of
parameters per layer. That should be more than sufficient.

The reason for the manual system is that the 6502 and 652402 have no
simple method for looking up a value relative to the top of the stack.
The mini computers that run UNIX do have an addressing mode to make that
easy.

Similarly, C can pass values back on the stack. The ACCembler instead
uses register A. An ACCembler program can use the RETURN keyword to store
a constant into register A and RTS out of the subroutine. Or the program
can store the value itself and just use the RETURN keyword on its own with
no value to generate the RTS assembly language.

6. Data blocks.

Assembly programs usually put all the data addresses and assembler-
directives for data constants at the top of the assembly file. That was
needed when assembler ran through the program file once, assembling from
top to bottom. For structured programs, and for complex programs written
in multiple files, that isn’t always the most logical way to organize the
data portion of a program.

To help with that logic, the ACCembler includes DATA blocks. Each block
can specify a name, an optional starting memory address, whether the data
is a BYTE, WORD or 24-bit values, and using {}s cleanly delineate the
values to be stored. E.g.:

/*
 * THE ADDRESSES OF THE 24 TEXT ROWS
 */
DATA TEXTSCREENBASE @$FF8000 WORD {
 $0400, $0480, $0500, $0580, $0600, $0680, $0700, $0780
 $0428, $04A8, $0528, $05A8, $0628, $06A8, $0728, $07A8
 $0450, $04D0, $0550, $05D0, $0650, $06D0, $0750, $07D0
}

The data block can also store a string of characters, with the ACCembler
automatically added a zero termination byte.

/* THE TITLE OF THE RESET SCREEN */
DATA HELLO STRING {
 "APPLE][4"
}

THE ACCEMBLER 51

More...

There is quite a lot more functionality in the ACCembler than mentioned
here, but those are the core ideas that show how the ACCembler is far more
than an assembler and a big step toward a high level language, while not
giving up any of the size, speed, or efficiency of assembly language.

If you didn’t notice, the other obvious syntax are the various methods for
commenting the code. The /* ... */ syntax is copied from C, as is the
“//” syntax, while the ‘;’ from assembly is allowed too.

OS4 was written using the ACCembler, and the result of that effort clearly
shows how this level of structure helps make the code more readable and
far far far more easily modified. Especially when multiple programmers
are working together on such a complex program as an operating system.

To see this yourself, the following pages includes a portion of that
source code.

THE ACCEMBLER 52

/*
 * ROM for the Apple][4
 *
 */

#include "OS4:globals.ac"

const N_COMMANDS = 21 // The number of commands in CommandList

/*
 * The code begins with a JMPs to the OS functions
 * followed by a table of addresses for JSR ($aaaa) indirect calls
 */
sub Start() @$FF0000 {
 jmp Reset
}

/*
 * RST vector points here
 */
sub Reset() @$FF0400 {
 cld
 sta LANGSET ; turn on][+ "upper" 16K (write twice)
 sta LANGSET
 r16 ; set the stack to be 16-bit wide
 sws
 ldx.w #TOP_OF_STACK ; initialize the stack at $FEFF
 txs.w

 lda TXTSET ; Start in TEXT mode
 lda TXTPAGE1 ; Page 1
 lda SETAN0 ; AN0 = TTL hi
 lda SETAN1 ; AN1 = TTL hi
 lda CLRAN2 ; AN2 = TTL lo
 lda CLRAN3 ; AN3 = TTL lo
 lda CLRROM ; turn off extension ROM
 bit KBDSTRB ; clear keyboard

 lda #2
 sta @TXTROW ; Start at TEXT row 2
 stz @TXTPOS ; Start at TEXT position 0

 jsr ClearLoRes ; Clear LORES page 2
 jsr ClearGraphics ; Clear GRAPHICS
 ; (which overlaps with HIRES page 2)

 lda #DISP_80COL ; Setup and clear 80-col TEXT screen
 jsr SetScreenMode
 ldx #0
 jsr ClearScreen ; Clear 80-col TEXT page

 lda #DISP_TEXT_1 ; Start in TEXT mode, page 1
 jsr SetScreenMode

THE ACCEMBLER 53

 ldx #0
 jsr ClearScreen ; Clear TEXT page 1
 jsr AppleII4 ; draw the header

 lda #DISP_64COL ; Setup and clear 64-col TEXT screen
 jsr SetScreenMode
 ldx #0
 jsr ClearScreen ; Clear 64-col TEXT page
 jsr AppleII4 ; draw the header on the 64-col page

 lda #'_' ; Initialize the cursor
 ora #$40
 sta @CURCHR

 lda #':'H ; Initialize the prompt
 sta @PMPTCHR

 lda.w #II4GR_START ; Reset GRPTR to GRAPHICS memory
 sta.w @GRPTR
 stz.w @GRX ; Reset GRAPHICS coordinate to 0,0
 stz.w @GRY
 lda #$FE ; Default to 16 pixel tall ROM Font
 sta @GRFONT

 lda.t #_64K ; Reset the memory heap to $10000 (64K)
 sta.t @HEAPSTART
 stz.t @RUNLENGTH

 jsr FindTopOfRAM ; search for the highest RAM address
 ; drop through to CommandLoop
}

/*
 * Interpret and run commands
 * echoing the keys as they are typed and store in @TYPBUFFER
 */
sub CommandLoop() {
 jsr ClearInputBuffers
 LOOP {
 jsr SetScreenBase ; Set the @TXTPTR based on @TXTROW
 lda @TXTPOS
 IF == {
 lda @PMPTCHR ; Draw the prompt
 jsr PrintChar
 jsr PrintCursor ; Draw the cursor
 }
 LOOP {
 bit KBD ; check keyboard for next key
 IF - {
 BREAK
 }
 }

THE ACCEMBLER 54

 lda KBD ; get the key code and ack the read
 bit KBDSTRB
 IF == $8D { ; 13 = CR ($80 | $0D in high ASCII)
 jsr ClearCursor
 jsr NextLine
 jsr CurrentToPrevInputBuffer
 jsr CommandLine
 jsr ClearCurrentInputBuffer
 CONTINUE
 }
 IF == $FF { ; 127 = DEL ($80 | $7F in high ASCII)
 lda @TXTPOS
 IF > 1 {
 jsr ClearCursor ; Erase the cursor
 lda #' 'H ; Erase the current character
 ldy @TXTPOS
 dey
 sta (@TXTPTR),y
 dey ; Delete the last character in the text buffer
 lda #0
 sta @TYPBUFFER,y
 dec @TXTPOS ; Decrement the text position
 jsr PrintCursor ; Draw the cursor
 }
 CONTINUE
 }
 IF == $88 { ; 8 = BS ($80 | $08 in high ASCII)
 lda @TXTPOS
 IF > 1 {
 jsr ClearCursor ; Erase the cursor
 lda #' 'H ; Erase the current character
 ldy @TXTPOS
 dey
 sta (@TXTPTR),y
 dey ; Delete the last character in the text buffer
 lda #0
 sta @TYPBUFFER,y
 dec @TXTPOS ; Decrement the text position
 jsr PrintCursor ; Draw the cursor
 }
 CONTINUE
 }
 IF == $89 { ; 9 = Tab ($80 | $09 in high ASCII)
 jsr CompleteCommand
 CONTINUE
 }
 IF == $8B { ; 11 = Up Arrow ($80 | $0B in high ASCII)
 jsr PrevToCurrentInputBuffer
 jsr InputBufferToTextScreen
 jsr PrintCursor ; Draw the cursor
 CONTINUE
 }
 IF == $9B { ; 27 = ESC ($80 | $1B in high ASCII)
 ldx @TXTROW ; Clear the current text buffer

THE ACCEMBLER 55

 jsr ClearRow
 jsr ClearCurrentInputBuffer
 lda #0
 sta @TXTPOS ; Reset to position 0

 lda @PREVDISP ; Return to the previous diplay mode
 ; (likely TEXT page 1 or 80col)
 jsr SetScreenMode

 CONTINUE
 }
 IF > $9F { ; >31 = Not a control character
 ; ($80 | $1F in high ASCII)
 ldy @TXTPOS
 jsr PrintChar
 cpy #40 ; Ignore IF >= column 40
 IF < {
 and #$7F ; store (low) ASCII in TEXT buffer
 dey ; Y-1 as TEXT position starts at 1,
 ; making space for the prompt
 sta @TYPBUFFER,y
 jsr PrintCursor
 }
 }
 }
 ; loop forever
}

/*
 * Lookup and execute the typed command
 */
sub CommandLine() {
 var I = @$04 ; loop variable
 var I6 = @$05 ; I * 6

 lda @TYPBUFFER ; Check for blank line
 if (==) {
 RETURN
 }

 lda.t #@TYPBUFFER
 sta.t %%7
 jsr ParseInputParams

 lda.t %%0.1 ; strA for CompareText
 sta.t %%7
 FOR @I = 0 TO N_COMMANDS-1 {
 lda @I ; X = @M$04 * 6 = (@M$04 * 4) + (@M$04 * 2)
 A <<= 2
 sta @I6
 lda @I
 A <<= 1

THE ACCEMBLER 56

 clc
 adc @I6
 sta @I6
 tax

 lda.t CommandList,X ; CommandList[X].string
 sta.t %%7.3
 jsr CompareTextCI
 IF - {
 ldx @I6
 lda.t CommandList+3,X ; CommandList[X].func
 sta.t %R0
 jsr.a24 (%R0)
 RETURN
 }
 }

 ldx.t %%0.1 ; Check for all spaces
 ldy #0
 LOOP {
 lda.a24 XY
 if (==) {
 RETURN
 }
 cmp #' '
 if (!=) {
 lda.t #UnknownCommandErr
 sta.t %%7
 jsr PrintError
 RETURN
 }
 iny
 }
}

/*
 * Try and complete the command
 */
sub CompleteCommand() {
 var I = @$04 ; loop variable
 var I6 = @$05 ; I * 6

 lda #@TYPBUFFER ; %%7 <- TEXT buffer
 sta.t %%7
 FOR @I = 0 TO N_COMMANDS-1 {
 lda @I ; X = @M$04 * 6 = (@M$04 * 4) + (@M$04 * 2)
 A <<= 2
 sta @I6
 lda @I
 A <<= 1
 clc
 adc @I6
 sta @I6
 tax

THE ACCEMBLER 57

 lda.t CommandList,X ; CommandList[X].string
 sta.t %%7.3
 jsr CompareStartOfTextCI
 IF - {
 ldx @I6
 lda.t CommandList,X ; %%0.1 <- CommandList[X].string
 sta.t %%7
 lda #@TYPBUFFER ; %%7.3 <- TEXT buffer
 sta.t %%7.3
 jsr CopyString
 lda.w @TXTPTR ; @TXTPTR <- Current line on
 ; TEXT screen
 inc.w ; +1 for the cursor
 sta.t %%7.3
 jsr CopyStringHigh
 iny
 sty @TXTPOS ; CopyString leaves the length
 ; of the string in Y
 jsr PrintCursor
 RETURN
 }
 }

 RETURN
}

#include "OS4:util.ac"
#include "OS4:graphics.ac"
#include "OS4:disk4.ac"
#include "OS4:commands.ac"
#include "OS4:view.ac"
#include "OS4:data.ac"

/*
 * IRQ vector points here
 */
sub Reset() @$FFFF00 {
 a24
 rti
}

/*
 * The 6502 vectors
 */
data Vectors @$FFFFF7 u24 {
 $000000 ; NMI
 $FF0000 ; RESET
 $FFFF00 ; IRQ
}

THE ACCEMBLER 58

FILE: OS4:globals.ac

/*
 * ROM for the Apple][4
 *
 * Constants and globals
 *
 */

const KBD = $c000 // R last key pressed + 128
const KBDSTRB = $c010 // RW keyboard strobe
const TAPEOUT = $c020 // RW toggle casSette tape output
const SPKR = $c030 // RW toggle speaker
const TXTCLR = $c050 // RW display graphics
const TXTSET = $c051 // RW display text
const MIXSET = $c053 // RW display split screen
const TXTPAGE1 = $c054 // RW display page 1
const TXTPAGE2 = $c055 // RW display page 2
const LORES = $c056 // RW display lo-res graphics
const HIRES = $c057 // RW display lo-res graphics
const SETAN0 = $c058 // RW annunciator 0 off
const SETAN1 = $c05a // RW annunciator 1 off
const CLRAN2 = $c05d // RW annunciator 2 on
const CLRAN3 = $c05f // RW annunciator 3 on
const TXT80CLR = $c060 // RW 80column mode off (was casette in)
const TXT80SET = $c068 // RW 80column mode on (was casette in)
const TXT64CLR = $c06E // RW 64column mode off (was DUP PDL2)
const TXT64SET = $c06F // RW 64column mode on (was DUP PDL3 on)
const PADDL0 = $c064 // R analog input 0
const PTRIG = $c070 // RW analog input reset
const LANGCLR = $c082 // Disable "Language card" RAM
const LANGSET = $c083 // Enable "Language card" RAM (2x write)
const CLRROM = $cfff // disable slot C8 ROM

const TOP_OF_STACK = $fdff // Put the stack in the "Language card" RAM

const RSTVECTOR = $fffc // Apple][6502 reset vector
const PWREDUP = $03f4 // Apple][stores #$A5 to soft reboot

global TXTPTR = @$fe.w // The address of the current line of text
 // (2 bytes as the TEXT screen is <$FFFF)
global TXTWIDTH = @$fd // The width of the current screen
 // (typically #40 or #80 columns)
global TXTROW = @$ff00 // The current row on the text screen
global TXTPOS = @$ff01 // The current position in the text screen
global TXTPGROWS = @$ff02 // The number of rows output to the screen
 // (used for pagination)
global DISPMODE = @$ff03 // The current display mode
 // (see DISP_xxxx constants)
global PREVDISP = @$ff04 // The previous display mode
 // (see DISP_xxxx constants)
global CURCHR = @$ff05 // The character to draw for the cursor
global PMPTCHR = @$ff06 // The character to draw for the prompt

THE ACCEMBLER 59

global GRPTR = @$ff20.w // The address of the current
 // row of graphics
 // (2 bytes as GRAPHICS is <$FFFF)
global GRX = @$ff22.w // The x coordinate for
 // drawing II4 GRAPHICS
global GRY = @$ff24.w // The y coordinate for
 // drawing II4 GRAPHICS
global GRFONT = @$ff26 // The current font ID

const _64K = $010000
global RAMTOP = @$ff10.t // The highest RAM memory address
global HEAPSTART = @$ff13.t // The start of the heap
 // (initially $10000, then
 // the page after the
 // loaded program)
global RUNLENGTH = @$ff16.t // The length of the loaded program

global TYPBUFFER = @$fe00 // $FE00-$FE4F holds
 // the line of text being typed
global TYPBUFFER2 = @$fe50 // $FE50-$FEBF holds
 // the previous line of text typed
global TYPBUFFER3 = @$feA0 // $FEA0-$FEEF holds
 // the previous PREVIOUS line of text

const DISP_PAGE_1 = $00 // MSB is page 1|2
const DISP_PAGE_2 = $80
const DISP_40COL = $00 // MSB-1 is 40|80 column
const DISP_64COL = $48
const DISP_80COL = $40
const DISP_TEXT = $00
const DISP_TEXT_MASK = $7F
const DISP_LORES = $20
const DISP_HIRES = $10
const DISP_II4 = $08

const DISP_TEXT_1 = $00 // PAGE 1 | 40COL | TEXT
const DISP_TEXT_2 = $80 // PAGE 2 | 40COL | TEXT
const DISP_LORES_1 = $20 // PAGE 1 | LORES
const DISP_LORES_2 = $A0 // PAGE 2 | LORES
const DISP_HIRES_1 = $10 // PAGE 1 | HIRES
const DISP_HIRES_2 = $90 // PAGE 2 | HIRES

const LORES_START = $800
const HIRES_START = $2000
const II4GR_START = $4000
const II4GR_END = $B800

const PAGINATE_LINES_PER_PAGE = 22

THE ACCEMBLER 60

FILE: OS4:data.ac

/*
 * ROM for the Apple][4
 *
 * Data blocks
 *
 */

/*
 * The ROM vector table – a.k.a. all the OS4 subroutines
 */
data ROMVectors @$FF0005 u24 {
 Wait
 SetScreenMode
 SetScreenBase
 GetChar
 PrintChar
 PrintSpace
 PrintCursor
 ClearCursor
 PrintString
 PrintError
 PrintHexDigit
 PrintHexByte
 PrintHexWord
 PrintHex24
 ResetPaginate
 PaginateLine
 NextLine
 ScrollScreen
 ClearRow
 ClearScreen
 ClearLores
 ClearHires
 ClearGraphics
 CompareText
 CompareTextCI
 CompareStartOfText
 CompareStartOfTextCI
 CopyString
 CopyStringHigh
 ParseInputParams
 ParseNumber
 ParseHexNumber
 ParseDecimalNumber
 Times10
 Modulo
 PlayBeep
}

/* The OS4 subroutines for Disk4 */
data DOSVectors @$FF0100 u24 {

THE ACCEMBLER 61

 Disk4Name
 Disk4CatalogStart
 Disk4CatalogNext
 Disk4Exists
 Disk4Create
 Disk4Open
 Disk4Close
 Disk4Read
 Disk4Write
 Disk4C800
 Disk4PrintError
}

/* The OS4 subroutines for the BitBlt4 chip */
data GraphicsVectors @$FF0200 u24 {
 GrSetBase
 GrSetFont
 GrSetX
 GrSetY
 GrTypesetChar
 GrTypesetString
 GrTypesetSpace
 GrTypesetCharBig
}

THE ACCEMBLER 62

/*
 * The addresses of the 24 TEXT rows
 */
data TextScreenBase @$FF8000 word {
 $0400, $0480, $0500, $0580, $0600, $0680, $0700, $0780
 $0428, $04A8, $0528, $05A8, $0628, $06A8, $0728, $07A8
 $0450, $04D0, $0550, $05D0, $0650, $06D0, $0750, $07D0
}

/*
 * The addresses of the 24 64-column TEXT rows
 */
data Text64ScreenBase word {
 $2000, $20c0, $2180, $2240, $2300, $23c0, $2480, $2540,
 $2040, $2100, $21c0, $2280, $2340, $2400, $24c0, $2580,
 $2080, $2140, $2200, $22c0, $2380, $2440, $2500, $25c0
}

/*
 * The addresses of the 24 80-column TEXT rows
 */
data Text80ScreenBase word {
 $2000, $2100, $2200, $2300, $2400, $2500, $2600, $2700,
 $2050, $2150, $2250, $2350, $2450, $2550, $2650, $2750,
 $20a0, $21a0, $22a0, $23a0, $24a0, $25a0, $26a0, $27a0
}

/*
 * The offsets for the first 64 of 384 rows in the GRAPHICS screen
 */
data GraphicsOffsets word {
 $0000, $0040, $0080, $00C0, $0100, $0140, $0180, $01C0
 $0200, $0240, $0280, $02C0, $0300, $0340, $0380, $03C0
 $0400, $0440, $0480, $04C0, $0500, $0540, $0580, $05C0
 $0600, $0640, $0680, $06C0, $0700, $0740, $0780, $07C0
 $0800, $0840, $0880, $08C0, $0900, $0940, $0980, $09C0
 $0A00, $0A40, $0A80, $0AC0, $0B00, $0B40, $0B80, $0BC0
 $0C00, $0C40, $0C80, $0CC0, $0D00, $0D40, $0D80, $0DC0
 $0E00, $0E40, $0E80, $0EC0, $0F00, $0F40, $0F80, $0FC0
}

/* The title of the reset screen */
data Hello string {
 "Apple][4"
}

/* The header when listing commands */
data CommandListStr string {
 "COMMANDS:"
}

/* The program has ended */
data EndProgramStr string {

THE ACCEMBLER 63

 ">> END PROGRAM"
}

/* The headers when printing the ASCII charset */
data ASCIIHeaderStr string {
 " 0123456789ABCDEF"
}
data ASCIIDashesStr string {
 " ----------------"
}

/* The header for the catalog */
data CatalogHeaderStr string {
 "CATALOG for "
}

/* Error string for load, view, etc. */
data UnknownCommandErr string {
 "*** Unknown COMMAND - see '?'"
}
data NoFilenameErrStr string {
 "*** FILENAME must be specified"
}
data NoFontNameErrStr string {
 "*** FONT NAME must be specified"
}
data NoFileTypeErrStr string {
 "*** FILE TYPE must be specified"
}

THE ACCEMBLER 64

data NoAddressErrStr string {
 "*** ADDRESS must be specified"
}
data NoValueErrStr string {
 "*** VALUE must be specified"
}
data NoLengthErrStr string {
 "*** LENGTH must be specified"
}
data EndBeforeStartErrStr string {
 "*** The END value is less than START"
}
data NoEditorForDirectoriesErr string {
 "*** You cannot EDIT a directory"
}
data NoEditorFoundErr string {
 "*** No EDIT program was found"
}
data NoFontFoundErr string {
 "*** The FONT was NOT found"
}
data NotFontFileErr string {
 "*** The file is not of type FNT"
}
data FontLoadFailedErr string {
 "*** FONT load FAILED"
}
data LoadedStr string {
 "LOADED "
}
data LoadedBytesToStr string {
 " bytes to $"
}

data NotRUNFileError string {
 "*** FILE Must be a RUN file"
}

/* General error message for bad argument */
data InvalidValue string {
 "*** INVALID VALUE"
}

THE ACCEMBLER 65

/* The header for the catalog */
data Disk4ErrorStr string {
 "*** DISK4 ERROR"
}
data Disk4ErrorNotFoundStr string {
 "*** DISK4: FILE NOT FOUND"
}
data Disk4ErrorExistsStr string {
 "*** DISK4: FILE ALREADY EXISTS"
}
data Disk4ErrorReadStr string {
 "*** DISK4: READ ERROR"
}

/* The waveform of the beep tone */
data BeepTimes byte {
 220, 220, 220, 60, 60, 60, 60, 60,
}

/*
 * Built in fonts
 */
data ROM_Fonts @$FFA000 u24 {
 $FFA020,
 $FFA600
 $FFB400
 $FFC900
}
data FONT_Apple7x8 @$FFA020 file { "fonts/charset7x8.fnt" }
data FONT_Apple14x16 @$FFA600 file { "fonts/charset14x16.fnt" }
data FONT_Chicago @$FFB400 file { "fonts/Chicago.fnt" }
data FONT_apple @$FFC900 file { "fonts/Motter.fnt" }

THE ACCEMBLER 66

/*
 * The list of commands
 */
data CMD_Help @$FFF800 string { "?" }
data CMD_Ascii string { "ascii" }
data CMD_Beep string { "beep" }
data CMD_Catalog string { "catalog" }
data CMD_Clear string { "clear" }
data CMD_Edit string { "edit" }
data CMD_Font string { "font" }
data CMD_Graphics string { "graphics" }
data CMD_Hires string { "hires" }
data CMD_Line string { "line" }
data CMD_Load string { "load" }
data CMD_Lores string { "lores" }
data CMD_Peek string { "peek" }
data CMD_Poke string { "poke" }
data CMD_Run string { "run" }

/*
 * The table of command names and address vectors
 */
data CommandList u24 {
 CMD_Help, DoHelp
 CMD_Ascii, DoAscii
 CMD_Catalog, DoCatalog
 CMD_Beep, PlayBeep
 CMD_Clear, DoClear
 CMD_Edit, DoEdit
 CMD_Font, DoFont
 CMD_Graphics, DoGraphics
 CMD_Hires, DoHires
 CMD_Line, DoLine
 CMD_Load, DoLoad
 CMD_Lores, DoLores
 CMD_Peek, DoPeek
 CMD_Poke, DoPoke
 CMD_Run, DoRun
}

THE 650024 67

BONUS
THE 650024

The 652402 proved that the 6502 CPU could be expanded to 24-bit address
space to create a far more powerful microcomputer. But that design has
quite a few limitations, including just three general purpose registers
and an 8-bit data bus. Once 24-bit addresses became the norm, the next
logical design step was a fully 24-bit CPU.

What makes an 8-bit CPU 8-bit is not just the width of the data bus and
not just the width of the registers, but also the width of the
instructions. A 16-bit CPU has 16-bit instructions. A 24-bit CPU has 24-
bit instructions.

Rather than using that expanded space to add million of new instructions,
that expanded space can be used to reference a multitude of registers.

The 650024 is a 24-bit CPU that replicates the core instructions of the
6502, but which includes 256 registers instead of just A, X, and Y. Each
instruction is 3 bytes long (24-bits), with the first byte encoding the
operation, the second encoding one register address, and the third
encoding a second register address (or for some opcodes, other values).

operation register A register B

For example, ADD24 R6 R9 adds the 24-bit value in register 6 to the 24-bit
value in register 9, storing the result in register 9. Similarly, the
instruction OR16 R125 R250 performs a logical or on the 16-bit values in
registers 125 and 250, storing the result in register 250.

How can a CPU have 256 registers? Simple. The 6502 designers talked
about how the zero page address mode was akin to addressable registers.
The 650024 builds upon that idea, using memory addresses 0-255 as the
register storage, in RAM, outside the CPU.

As the speed of future 650024 implementations increase, a subset of that
memory space can be stored within the CPU to ensure access to the
registers keep up with the CPU speed. Someday, when CPUs have hundreds of
thousands of transistors, all 256 bytes of registers can be included
within the CPU itself.

Note that the register set is not 256 24-bit registers, but 256 bytes of
storage, addressable as 256 8-bit registers or 128 16-bit registers or 85
24-bit registers, or any mix of sizes. The register name is the memory

THE 650024 68

address of the first byte of the register, with the bytes stored in little
endian, i.e. the least significant byte first and the most significant
byte last, the same way the 6502 reads and writes 16-bit values in RAM and
the same way the 652402 reads and writes 16-bit and 24-bit values in RAM.

Each 650024 instruction that uses registers comes in three sizes: OP8,
OP16, and OP24, specifying whether the value in the registers are accessed
as 8-bit, 16-bit, or 24-bit values. Both registers must be the same size.
Thus, if an 8-bit counter is being added to a 24-bit address, the 8-bit
value must use three consecutive register addresses, with the two most
significant bytes set to zero.

Just as not every 6502 instruction references a register, the same is true
for the 650024. The instructions that use two registers include: ADC,
ADD, SBC, SUB, AND, EOR, OR, CMP, and CP. The following instructions use
a single register: ADI, BIT, DEC, INC, PSH, PLL, SBI, SL, SR, RL, RR, and
CPU. Some of the LD and ST address modes use one register, some use two,
and some use none. Similarly, the address modes vary for JMP and JSR.
And some instructions do not use any registers: RTS, RTI, BRK, CLR, SET,
PHF, PLF, and all the various BRAnch instructions.

If you are familiar with the 6502 instructions, most of these opcodes
should look familiar. The 650024’s instructions are very similar, with a
few of the names simplified, a few extra variations added, and thanks to
the 3-byte instruction length, some instruction families simplified down
to a single instruction.

Load/Store

Let’s start by looking at the instructions for loading values from memory
into registers and storing values from registers into memory. This is the
biggest change from the 6502. The only instructions that access memory
are LD (load) and ST (store). All other instructions can only modify the
values in registers or modify the state of the CPU, with the exception of
the PSH (push) and PLL (pull) instruction for modifying the stack.

MODE WIDTH SYNTAX HEX LEN
Immediate 8-bits LD #$45 Rb $10 3
Immediate 16-bits LD #$4567 Rb $11 6
Immediate 24-bits LD #$456789 Rb $12 6
Absolute 8-bits LD8 $654321 Rb $14 6
Absolute 16-bits LD16 $654321 Rb $15 6
Absolute 24-bits LD24 $654321 Rb $16 6
Register 8-bits LD8 Ra Rb $18 3
Register 16-bits LD16 Ra Rb $19 3
Register 24-bits LD24 Ra Rb $1A 3
Reg+Next 8-bits LD8 Ra+ Rb $1C 3
Reg+Next 16-bits LD16 Ra+ Rb $1D 3
Reg+Next 24-bits LD24 Ra+ Rb $1E 3

THE 650024 69

The LD (load) operations have four addressing modes: Immediate, Absolute,
Register, or Register+Next.

Immediate mode loads a value stored in the opcode into a register. This
value is stored in the second register byte for 8-bit values. For 16-bit
and 24-bit values, this is stored in the 3 bytes after the opcode, making
the whole instruction 6 bytes long. This is similar to the 6502 whose
instructions can be 1-byte, 2-byte, or 3-bytes long.

Absolute mode loads the value stored in the specified memory location.
The memory address is always specified as a 24-bit address, and thus the
whole instruction is always 6 bytes long.

Register mode loads the value into register B that is stored in the memory
address specified by register A.

Register+Next mode is the same as Register mode, except that the address
stored in register A is incremented by 1, 2, or 3, matching the width of
the value being loaded. This mode allows for tight loops that load a
series of values into a set of registers, without having to ADD or INC the
index register A in a separate operation.

The address modes for the ST (store) operations are the same as for LD,
except that there is no Immediate mode for storing values. To store a
specific value, the value must first be loaded into a register.

MODE WIDTH SYNTAX HEX LEN
Absolute 8-bits ST8 $654321 Rb $14 6
Absolute 16-bits ST16 $654321 Rb $15 6
Absolute 24-bits ST24 $654321 Rb $16 6
Register 8-bits ST8 Ra Rb $18 3
Register 16-bits ST16 Ra Rb $19 3
Register 24-bits ST24 Ra Rb $1A 3
Reg+Next 8-bits ST8 Ra+ Rb $1C 3
Reg+Next 16-bits ST16 Ra+ Rb $1D 3
Reg+Next 24-bits ST24 Ra+ Rb $1E 3

Copying Registers

The value in one register can be copied into another register using the CP
opcode, which comes in three sizes: 8-bits, 16-bits, and 24-bits.

MODE SYNTAX HEX LEN
8-bits CP8 Ra Rb $20 3
16-bits CP16 Ra Rb $21 3
24-bits CP24 Ra Rb $22 3

THE 650024 70

Stack

The PSH and PLL opcodes push and pull registers from the stack. Each
operation comes in three sizes: 8-bits, 16-bits, and 24-bits.

MODE SYNTAX HEX LEN
8-bits PSH8 Ra $30 3
16-bits PSH16 Ra $31 3
24-bits PSH24 Ra $32 3

8-bits PLL8 Ra $34 3
16-bits PLL16 Ra $35 3
24-bits PLL24 Ra $36 3

The PHF and PLF opcodes push and pull the processor flags from the stack.
This is always an 8-bit value.

PHF (PusH processor Flags) $3E 3
PLF (PuLl processor Flags) $3F 3

Note that the stack pointer is the 24-bit register R250. Using a register
for this value eliminates the need for special opcodes to manage the stack
pointer.

Arithmetic

The operations for adding (ADC and ADD) and subtracting (SBC and SUB) all
specify two registers, A and B, and all store the result in register B.
All of these operations also specify a width, 8-bit, 16-bit, or 24-bit.

MODE SYNTAX HEX LEN
8-bits ADC Ra Rb $54 3
16-bits ADC Ra Rb $55 3
24-bits ADC Ra Rb $56 3

8-bits ADD Ra Rb $50 3
16-bits ADD Ra Rb $51 3
24-bits ADD Ra Rb $52 3

8-bits SBC Ra Rb $5C 3
16-bits SBC Ra Rb $5D 3
24-bits SBC Ra Rb $5E 3

8-bits SUB Ra Rb $58 3
16-bits SUB Ra Rb $59 3
24-bits SUB Ra Rb $5A 3

Both addition and subtraction have opcodes with and without the use of the
carry flag. This saves the extra operation for clearing or setting the
carry flag that is often found in 6502 assembly code. While that extra
operation is just one extra byte on a 6502, it is three extra bytes on a
650024 as the smallest operations are three bytes long.

THE 650024 71

There is also an ADI opcode for adding an 8-bit value to the value in a
register and SBI opcode for subtracting an 8-bit value from a register.
This allows for a 3-byte operation to increment a register value by 2, to
jump between 16-bit values or by 3, to jump between 24-bit values without
having to use multiple INC instructions.

MODE SYNTAX HEX LEN
8-bits ADI #V Rb $60 3
16-bits ADI #V Rb $61 3
24-bits ADI #V Rb $62 3

8-bits SBI #V Rb $64 3
16-bits SBI #V Rb $65 3
24-bits SBI #V Rb $66 3

Increment and Decrement

All 650024 compilers should provide mnemonics for INC and DEC, encoding
the opcodes as ADI and SBI instructions with 1 as the immediate value.

Shift and Roll

The 650024 includes a symmetric set of opcodes for shifting and rolling
the bits within a register. Each shift or roll shifts one bit left or
right. The roll opcodes use the carry flag for a 9th, 17th, or 25th bit.

MODE SYNTAX HEX LEN
8-bits SL Ra $70 3
16-bits SL Ra $71 3
24-bits SL Ra $72 3

8-bits SR Ra $74 3
16-bits SR Ra $75 3
24-bits SR Ra $76 3

8-bits RL Ra $78 3
16-bits RL Ra $79 3
24-bits RL Ra $7A 3

8-bits RL Ra $7C 3
16-bits RL Ra $7D 3
24-bits RL Ra $7E 3

Bit test

The 650024 includes the BIT opcode for setting various processor flags,
like the 6502, but only with values stored in registers.

MODE SYNTAX HEX LEN
8-bits BIT Ra $D4 3
16-bits BIT Ra $D5 3
24-bits BIT Ra $D6 3

THE 650024 72

Bitwise Logic

The operations bitwise logic (AND, OR, and EOR) all specify two registers,
A and B, and all store the result in register B. All of these operations
also specify a width, 8-bit, 16-bit, or 24-bit.

MODE SYNTAX HEX LEN
8-bits AND A B $40 3
16-bits AND A B $41 3
24-bits AND A B $42 3

8-bits OR Ra Rb $44 3
16-bits OR Ra Rb $45 3
24-bits OR Ra Rb $46 3

8-bits EOR Ra Rb $48 3
16-bits EOR Ra Rb $49 3
24-bits EOR Ra Rb $4A 3

Processor Flags

The 650024 includes the same processor flags as the 6502, with an
additional X flag that is not changed by any opcodes other than SET and
CLR, usable by the programmer as a programmable flag.

MNEMONIC HEX
CLR f (CLeaR flags) $8E
SET f (SET flags) $8F

Rather than individual opcodes for each flag, the CLR and SET opcodes can
set or clear one or more flags in a single operation, with a specified
bitmask to determine which flags are updated. The syntax is the name of
the flag, e.g. CLR INZCVX to clear all of the flags or SET C to set the
carry flag.

Various opcodes set or clear the C, V, Z, and N flags, just like on the
6502. The biggest difference is that the width of the register determines
how many bits or which bits in the opcode value to set the flags. Like
the 6502, the CMP opcode can set these flags, as can other opcodes.
Unlike the 6502, the 650024’s CMP opcode only compares two registers or
one register with an immediate, 8-bit value.

MODE SYNTAX HEX LEN
8-bits CMP Ra Rb $80 3
16-bits CMP Ra Rb $81 3
24-bits CMP Ra Rb $82 3

8-bits CMP #V Rb $84 3
16-bits CMP #V Rb $85 3
24-bits CMP #V Rb $86 3

THE 650024 73

Branches

The 650024 includes the same set of branches as the 6502, plus BRA to
always branch. All branches are relative to the current program counter.
All the branches can either be 3-bytes long with a jump forward or
backward 16383 bytes or a 6-byte long instruction with a jump forward or
backward 16777215 bytes. The compiler is expected to set the most
significant bit of the second instruction byte to encod the length.

MNEMONIC HEX
BRA (Branch Always) $90
BEQ (Branch on EQual) $91
BNE (Branch on Not Equal) $92
BCC (Branch on Carry Clear) $93
BCS (Branch on Carry Set) $94
BPL (Branch on PLus) $95
BMI (Branch on MInus) $96
BVC (Branch on oVerflow Clear) $97
BVS (Branch on oVerflow Set) $98
BXC (Branch on X flag Clear) $99
BXS (Branch on X flag Set) $9A

Jumps

The JMP opcode has three address modes for specifying the address of the
next opcode. Absolute mode specifies a memory address. Register mode
uses the 24-bit value stored in the specified register. Reg+Reg mode adds
the 24-bit values of two registers and jump to that address, leaving the
values in the two registers unchanged.

MODE SYNTAX HEX LEN
Absolute JMP $654321 $04 6
Register JMP Ra $05 3
Reg+Reg JMP Ra+Rb $06 3

Subroutines

The JSR opcode has the same three address modes as JMP, plus two more that
use relative addresses, similar to the branch opcodes. JSRS is a 3-byte
opcode that specifies an address forward or backward 32767 bytes from the
current program counter. JSRL is a 6-byte opcode that allows for jumps
forward or backward 16777215 bytes.

MODE SYNTAX HEX LEN
Absolute JSR $654321 $08 6
Register JSR Ra $09 3
Reg+Reg JSR Ra+Rb $0A 3
Relative JSRS +disp $0B 3
Relative JSRL +disp $0C 6

THE 650024 74

All JSR opcodes push the 24-bit address of the next instruction on the
stack. The RTS opcode pulls a 24-bit value from the stack and sets the
program counter to that value.

MODE SYNTAX HEX LEN
Implied RTS $60 3

Interrupts

When the interrupt pin is set, the 650024 pushes an 8-bit value with the
processor flags on the stack, followed by the 24-bit address of the
current opcode. The RTI opcode pulls those values, resets the program
counter and processor flags, and continues processing where the interrupt
occurred.

MODE SYNTAX HEX LEN
Implied RTI $01 3

Break

The BRK opcode causes a software-defined interrupt.

MODE SYNTAX HEX LEN
Implied BRK $00 3

No operation

The NOP opcode performs no operation. Unlike on the 6502, where each NOP
consumes one cycle, on the 650024, the NOP opcode can specify up to 16383
cycles. Interrupts can interrupt a NOP, shortening that delay.

MODE SYNTAX HEX LEN
1-cycle NOP $03 3
N-cycles NOP n $03 3

CPU model & features

The CPU opcode load the CPU features into a register, storing the CPU
version number in the least significant byte, the number of registers
built into CPU in the second byte, and the third byte reserved for future
use.

MODE SYNTAX HEX LEN
24-bits CPU Ra $20 3

THE 650024 75

The Stack Pointer is R250

The stack pointer is embedded within the CPU, but it is also addressable
as the 24-bit R250 in any of the operations that specify a register. The
24-bit R250, the 16-bit R250 and R251, and 8-bit R250, R251, and R253 are
all readable and writable by any of the opcodes that use registers.

This allows for addressing modes that are relative to the top of the
stack, and it allows for popping large blocks off the stack without
requiring a loop or sequence of PLL operations.

Some high-level languages like C use the stack for storage without
subroutines, and both the stack-relative address modes

The Program Counter is R253

The program counter is embedded within the CPU, but it is also addressable
as R253 in any of the operations that specify a register.

This allows for addressing modes that are relative to the currently
running program, which is useful for relocatable code.

Do note that the 24-bit R253, 16-bit R253 and R254, and 8-bit R253, R254,
and R255 may be implemented as read-only values by the CPU, with the JMP
and JSR opcodes as the only method for writing a new value to the program
counter.

THE 650024 76

