The SY6516 Pseudo-16 Bit Processor

While the 6502 is a great microprocessor as it stands,
advances are being considered to make it even better.
One of the approaches is to add some new capabilities
such as some 16 bit operations, improved addressing,

and more.

For those of you who may have
wondered what the 6502 equivalent of the
MC6809 would be, wonder no longer.
Synertek is almost ready to ship the
SY6516.

Synertek announced the 6516 almost a
year ago, but due to production problems,
it never quite made it. The 6516 was
designed by Atari Inc. (back then it was to
be called the 6509) for use with the Atari
400 and 800 computer systems. Unfor-
tunately, Synertek was unable to deliver
the chip in time for Atari to use it in their
computers.

What is a Pseudo 16-bit Computer?

A pseudo 16-bit computer uses an in-
ternal 16-bit register arrangement, but ex-
ternally it uses an eight bit bus. Sixteen
bit data is multiplexed in, much like the
Alpha Micro computer on the S-100 bus.
In addition to the new 16-bit instructions,
the 6516 maintains all of the 8-bit instruc-
tions of the 6502. You may reassemble
your source files currently on the 6502
and run them directly on the 6516. All the
information that | have recieved says that
the 6516 is SOURCE code compatable
with the 6502 and that it is OBJECT code
incompatable with the 6502. | have heard
rumors that Synertek is attempting to
make the 6516 object code compatable,
but quite honestly, | don't believe there is
much chance of it happening.

Unlike the Motorola MC6809, which
has a distinct set of 8-bit instructions and
a distinct set of 16-bit instructions, the
SYB516 contains a special register (the
“Q" register) which toggles the system
back and forth between 8-bit operation
and 16-bit operation. In addition, all
registers in the 6516 (A, X, Y, and SP) are

23:36

now 16-bits wide. The “Q" register con-
tains four bits which may be programmed
to put the accumulator in the 16-bit mode,
the X-register in the 16-bit mode, the
Y-register in the 16-bit mode, and memory
in the 16-bit mode (for use with INC, DEC,
ASL, ROL, ROR, LSR, etc). If the ac-
cumulator is programmed to be in the
16-bit mode, then LDA will load the ac-
cumulator with 16-bits, the low order byte
coming from the specified address and
the high order byte coming from the
specified address plus one. If the ac-
cumulator is in the 8-bit mode, then the
LDA instruction behaves identically to
the LDA on the 6502. The other registers
(X, Y, and Memory) behave identically.

It does not take twice as long to per-
form a 16-bit instruction compared to the
equivalent 8-bit instruction, as you might
expect. Usually only one additional clock
cycle is required. This means that 6516
code will run as much as 3 times faster
than 6502 code performing the same
operation.

In addition, several instructions have
been ‘‘speeded up"” over the 6502
equivalent. For instance, implied instruc-
tions now only require one cycle for com-
plete execution (the 6502 requires 2).
Several other instructions have been
speeded up as well (see Table One).

Variety of addressing modes is what
makes the 6502 as flexible as it is. The
6516 includes many more addressing
modes in its instruction set. In particular,
indirect addressing (without the indexed
by ¥ or preindexed by X), 16-bit relative
addressing (there is now a jump relative,
so your code can be relocatable), and
direct page addressing.

Direct page addressing is something

MICRO -- The 6502 Journal

Randall Hyde
12804 Magnolia
Chino, CA 91710

really special. It is available on the 6502 in
a restricted form; on the 6502 it is called
zero page addressing. Direct page ad-
dressing is different , in that any of the
256 pages in the 6516 address space may
be used. The particular page is selected
by the 8-bit direct page register “Z"”. The
direct page facility should clear up many
problems associated with zero page con-
flicts occuring in the 6502

The New Instructions

The 6516 has a total of 114 instructions
(compared to the 6502’'s 56). This gives a
total of 255 different opcodes. Some of
the new instructions are listed on the
next page.

The User Flag

Bit 5 of the P register has been undefin-
ed to this point in the 6502. The 6516
utilizes this bit as a user defined flag. In-
cluded in the instruction set are instruc-
tions to set and clear this flag, as well as
branch if set, and branch if clear. This
user defined flag will prove to be a great
help to users who are writing a boolean
function. Up till now, the 6502 program-
mer had to use the carry or overflow flag.
The user defined flag will help allieviate
problems associated with the use of the
aforementioned flags.

The 6516 instruction set was defined to
allow maximum capability with the
minimum number of instructions possi-
ble. For those of you who would really like
to have seen an instruction of the form:

JMP (LBL,X)
you may simulate this by:

LDY LBL.X
YPC

April, 1980

The instruction sequence still requires struction set to allow a much more little more pleasant to the die-hard com-
only 3 bytes (assuming LBL is a direct regular syntax. This should prove to be a puter scientist.
page reference) and the timing is 7 cycles
which is only two cycles more than a

straight jump indirect. This would ex- The New Instructions
ecute just as fast as a JMP (LBLX} in-
struction were it included directly in the LIS M-18 (LOAD STACK FIINTER FROM MEMORY)
instruction set. LHA M- YAH (LOAD HiIGH DRLER ACL FROM MEMORY)
LHX M-}XH (LDAD HiGr ORDER X-REG FROM MEMIRY)
For those of you who would like to have LHY M-)YH (LDAD HIGH URLER Y-REGC FRUM MEMORY)
seen the auto-increment and auto- LAX M{X)-)A (LOAD ACC INDIRECT THRDUGH X REG)
decrement instructions of the MC6809, LAY M(Y)-)A (LOAD ACC INUIRECT THROUGR Y REG)
once again they can be simulated by the SAY A-IM(Y) (STORE ACC INDIRECT THROUGH Y REG)
6516. For instance, the sequence LAX,
INX simulates a post increment and INX, ADD AsMo S A (ADD W/G CARRY)
LAX simulates a pre-increment. These in- SUB A-M-)A (SUBTRACT W/0 CARRY?
structions require two bytes (the same as AXA A+X-)A (ADL X REG TO ACC)
the 6809) and execute in 3 to 4 cycles AYA A+Y=5A {ADD ¥ REG TO ACC)
(depending on whether you are in the AAX AsY X (ADD ACL TO X REG)
eight-bit or 16-bit mode). This speed is AAY A+Y-)Y (ADD ACC TQ Y RES)
comparable to the 6809. AMX X+M-)X (ALD MEMORY TU X REG)
AMY Y+M-)Y (ADL MEMORY TO Y REG)
The only advantage of the 6809 over e oty fn :
(e 512 b tha 880D multiply insthucion. NES NEGIAI-YA C'H CORPLINENE Qi
However, a software multiply on the 6516 .
should execute fast enough so that it 2;¥ :23-}:-}‘5 EEE:TAgEL}::
won't make that big a difference. ASR (ARITHIMETIC SHIFT RIGHT ACC)
RHL (ROTATE AH LEFT THROUGH CARRY)

The addition of two stacks in the 6809

; : RHR (ROTATE AH RIGHT THROUGH CARRY)
gmﬂf’at;egf R i e RXL (ROTATE X REG LEFT THROUGH LARRY)
16-bit stack pointer. Those of you writing RXR (ROTATE X REG RIGHT THROUGH CARRY:
machine interpreters (such as the UCSD RYL (ROTATE Y REG LEFT THROUGH CARRY)
Pascal Pcode interpreter) will be able to RYR (ROTATE ¥ REG RIGHT THROUGH CARRY)
simulate a stack machine quite easily on
the 6516.
TZA Z-)AL ({TRANSFER Z TO ACC LOW)
In my opinion, Synertek has taken YFC Y-)FC {TRANSFER Y REG TO FC)
everything wrong with the 6502 and fixed FCY PC=2Y (TRANSFER PC TO Y REG)
it, in addition to adding several features XHA AL{-}AH (EXCHANGE ACC BYTES)
which | had not even previously con- XY YL{=-2YH (EXCHANGE Y REG BYTES)
sidered. The 6516 is easily the most XHX XL(-)XH {EXCHANGE X REG BYTES)
powerful 8-bit processor available (with XXY N{=)Y (EXCHANCE X WITH Y REGISTAR)
due respects to the Intel 8088 which | Ex(-3y
would rate “almost there”). This opinion,
incidently, is not just my own. EDN rated SEF 1-OF (SET USER DEFINABLE FLAG)
the 6516 above all the 8-bit processors CLF 0-)F {CLEAR USER DEFINAELE FLAG)
and even some 16-bit processors, several LDa M-8 (LOAD @ REGISTAR FROM MEMORY)
months ago. If Synertek does indeed SEV 1-)V {SET OVERFLOW FLAG)
make the 6516 processor object code
compatable with the 6502, it will definite- BFS (BRANCH IF FLAG SET)
ly make the 6516 something you BFC (BRANCH IF FLAG CLEAR)
shouldn't scoff at. Why? Because JNE (JUMP IF NOT £3uAL TU ZERU 16-BIT RELATIVE)
oncethis happen, 50,000 APPLE Il com- JEQ (JUMP IF EQUAL TC 2ZERO, 16-BIT RELATIVE)
puters will be upgradeable directly to a
16-bit processor and maintain software FHDO A-21(S) (14-BIT ACC FUSH)
compatability with existing software. FLD I5)-3A (1&4-BIT ACC FULL)
Likewise, the 70,000 or so PETs will be EHX X=315) (14-BIT X REG PUSH)
upgradeable and the OSI, and the KIM, ey (§)-3X (16-BIT X REGC FULL)
and of course, the SYM, etc. ete. PHY V-3 (5) {16-8IT Y IEC FUSH)
The only fault | find with the 6516 is the FLY (8)-2¥ {1&-BIT Y RES PULL)
assembly language mnemonics chosen FHZ Z=3(5)» (FUSH Z REG ONTO STACK,
by Synertek. They should have followed G-1(5) FUSH @ REG ONTO STACK)
the example laid down by Motorola and FLZ (8)-)4d (PULL G FROM STACK:
used mneomics which specify the action, (S)-12 FULL Z FROM S5TACK)
leaving the decision of where the data is FHR (COMBINATION GF FPHD, FHX: FHY, AND FHZ)
coming from to the operand field. FLR (COMBINATION OF 7LL, ~LX,» F~LY, AND PLZ)
| am currently writing a version of LISA BRL (FERFORMS A J3R ($FFF0))
(an interactive 6502 assembler for the AP- BRZ {FERFORMS A JSR ($FFF2))
PLE 1l) for the 6516. | will maintain BR3 (“ERFORMS A JSR ($FFF4))
Synertek's syntax, however | will add BR4 (PERFORMS A JSR ($FFF&))
several extensions to the syntax and in- ERS (FERFORMS A JSR ($FFF8))

April, 1980 MICRO -- The 6502 Journal 23:37

